Lecture 14

Dancing Segway and Analysis
of Musical Signal

Peter Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 1

Segway Challenge — Aim and Objective

€ To demonstrate your understanding of four topics in the Electronics 2
modules that are important to a design engineer:

1. Signal processing;
2. System analysis and design;
3. Feedback control;
4. Real-time embedded system

¢ The various challenges are designed to achieve the following:
1. Apply what you have learned in this module to a real-life problem;

2. Learn to combine offline processing using Matlab with real-time processing
using MicroPython,;

3. Apply embedded system concepts and techniques such as sampling, buffer,
interrupts, scheduling etc.;

4. Have fun!

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 2

Segway Project — Learning Outcomes

€ By the end of the challenges, you will be able to do most if not all of these:

1.

Process music signals using signal processing techniques to extract its signal

characteristics such as rhythm (e.g. beat), speetral-contents{e-g—colour)-and

Creatively map the music characteristics to dance routines (manual);

Analyse music signals in real-time on the microcontroller to synchronize dance
movement to music;

Balance a mini-Segway using a PID controller so that it moves around on two
wheels under the control of your phone;

Implement the mini-Segway that autonomously dance to live music.

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 3

Electronics 2 — from the past!

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 4

Capturing real-time audio samples

¢ Sampling at 8kHz — assume that music signal under 4kHz
€ Should use anti-aliasing filter (but not on PyBench)

€ To capture the audio signal, you need to:
1. Set up a timer to produce an interrupt every 125 microsecond

2. Capture a microphone sample and put it into a buffer s_buf (i.e. an array) which
stores N samples in sequence (N is 160 in my code, but can be changed)

3. When the buffer is full (i.e. N samples capture), set buffer_full to TRUE (this is
called a semaphore or a flag)

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 5

Setting up the Timer to generate an interrupt

€ The microcontroller used on Pybench has many timers which can be
programmed to produce interrupts

€ We will use Timer 7 to generate the sampling interrupt
€ Our interrupt service routine (ISR) is isr_sampling

Create timer interrupt - one every 1/8000 sec or 125 usec
sample_timer = pyb.Timer(7, freq=8000)
sample_timer.callback(isr_sampling)

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 6

€ In all the algorithms considered so far, we need to store N data samples.
Data could be input music signal (from microphone) x[n], or instantaneous

energy p[n].
€ In Matlab, this is easy. Matlab perform analysis offline, and you can store

Buffering of signals

the signal is a huge array.

€ In real-time system, this is not practical (nor possible!).

€ Solution: implement a buffer:

x[0] 0 0 0
A VAW AW
X[1] X[0] 0 0
A\ VA VAW AW
X[2] X[1] X[0] 0
VR VIRV \
X[3] | X[2] X[1] X[0]

PYKC 8 March 2024

DE2 — Electronics 2

Lecture 14 Slide 7

Efficient Buffering Method

€ Instead of moving lots of data, you can use a “pointer” to specify where to
put the new data:

€ Use x[ptr], and increment ptr each time a new data comes in.
€ Wraparound to O when ptrreaches N: ptr = (ptr + 1) $ N

i
n=0 x0] | O 0 0 0 0
n=-1 X[0] Xh] 0 0 0 0
}

n=2 x[0] | x[1] | x[2] 0 0 0

v M '
= N-1 x[0] | x(11 | x(21 | x3] | X[N-1]
n=N x[N] | x[(1] | x[2] | x[3] | X[N-1] « Wrap-around

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 8

Interrupt Service Routine - isr_sampling

€ The ISR do the following:
1. Read microphone data
2. Store it in the next location in array s_buf [ptr] — ptr is the index to the array
3. Increment index by 1
4. If index reaches N, buffer is full — set the flag (semaphore)

Interrupt service routine to fill sample buffer s_buf

def isr_sampling(dummy): # timer interrupt at 8kHz
global ptr # need to make ptr visible in here
global buffer_full # need to make buffer_filled visible in here

s_buf[ptr] = mic.read() # take a sample every timer interrupt
ptr += 1
if (ptr == N):

ptr = 0

buffer_full = True

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 9

Beat detection using instantaneous energy (method 1)

€ Assuming that sampling frequency is 8kHz
® We keep the current sample and N-1 previous samples of input x[n]

€ Compute instantaneous energy of sound signal x[n] in, say, 20 msec
window (N = 160):

159
pln] = Zkzox[" — k]2

€ One approach is to take the Fourier transform of the energy signal p[n].

€ Collect 1-2 second worth (i.e.50 to 100 p [n] values) and perform FFT on
Matlab.

¢ The fundamental frequency of the spectrum P [jo] provides an estimate of
the beat frequency.

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 10

Beat detection using instantaneous energy (method 2)

¢ Compute instantaneous energy of sound signal x[n] in 20 msec window:

159
pln] = Zkzo"[" — k]2

€ Compute steady state local energy by averaging 100 instantaneous energy
values p|[0] to p[99] :

1 99
<p>x— —j
p 10()2]:0/9[71 jl

4 Beat occurs in the window when p[n] > b X< p > ,wherebisa
threshold chosen for the music.

€ Method useful for real-time synchronisation (running MicroPython on
Pybench).

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 11

Beat detection using instantaneous energy (method 3)

€ The problem of the previous method is that if you choose the wrong value
for b, the algorithm will not work well.

€ The threshold b need to adapt to the music itself. How?

€ Compute the variance v[n] of the instantaneous energy p[n] over 20msec
window:

1 99
v[n] = mzjzo(p[n —jl=<p>)?

€ Now computer the threshold value b as:

b= B —axv[n]
andtry B =1.5, and a = 0.0025

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 12

Beat detection using Frequency selected energy

€ Algorithm so far does not consider the frequency content of the music
sound. That is, we ignore the frequency spectrum of the signal — it is colour

blind!

€ We know that beat information in a signal is actually frequency band
related.

€ Beat from drums — low frequency; beat from cymbal or triangle — high
frequency.

€ Therefore, assuming that our music is drum heavy, you can low pass filter
the signal first before performing the previous beat detection algorithm.

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 13

Colour of Music

€ By analysing the spectrum of music using Matlab, you can also determine
whether the music segment is vigorous or melodic.

€ Based on its spectrum, you can determine how to map music segment to
dance move.

€ You should then store the dance move as ASCII characters in a text file,
which can then be transferred to Pybench using the Micro SD card.

PYKC 8 March 2024 DE2 — Electronics 2 Lecture 14 Slide 14

Package to drive motors

+ The package motor.py is available to help you drive the two motors with ease. It will
make developing your milestone code much easier.

+ You must first import the package, and then create the motor object:

rrom motor 1mport
~reate motor obijec

motor = DRIVE()

Thereafter, you can use the following methods:

The first five methods are
useful to control speed of the
motors using the CONTROL
PAD via Bluetooth

¢ The last six methods are
directly controlling the
movements of the two motors
(in an open-loop manner)

+ Vis not really the speed, but
the PWM drive value to the
motors.

Method

Description

motor.up_Aspeed(v)

increase motor A speed by v

motor.up_Bspeed(v)

increase motor B speed by v

motor.dn_Aspeed(v)

Reduce motor A speed by v

motor.dn_Bspeed(v)

Reduce motor B speed by v

motor.drive()

Drive motors at their set speeds

motor.A_forward(v)

Drive motor A forward at v

motor.B_forward(v)

Drive motor B forward at v

motor.A_back(v)

Drive motor A backward at v

motor.B_back(v)

Drive motor B backward at v

motor.A_stop()

Stop motor A

motor.B_stop()

Stop motor B

PYKC 8 March 2024

DE2 — Electronics 2

Lecture 14 Slide 15

