
Lecture 14  Slide 1PYKC 8 March 2024 DE2 – Electronics 2

Lecture 14

Dancing Segway and Analysis 
of Musical Signal

Peter Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk



Lecture 14  Slide 2PYKC 8 March 2024 DE2 – Electronics 2

Segway Challenge – Aim and Objective
 To demonstrate your understanding of four topics in the Electronics 2 

modules that are important to a design engineer: 
1. Signal processing; 
2. System analysis and design; 
3. Feedback control; 
4. Real-time embedded system 

 The various challenges are designed to achieve the following:
1. Apply what you have learned in this module to a real-life problem;
2. Learn to combine offline processing using Matlab with real-time processing 

using MicroPython;
3. Apply embedded system concepts and techniques such as sampling, buffer, 

interrupts, scheduling etc.;
4. Have fun! 



Lecture 14  Slide 3PYKC 8 March 2024 DE2 – Electronics 2

Segway Project – Learning Outcomes
 By the end of the challenges, you will be able to do most if not all of these:

1. Process music signals using signal processing techniques to extract its signal 
characteristics such as rhythm (e.g. beat), spectral contents (e.g. colour) and 
mood (e.g. swinging, loud, quiet);

2. Creatively map the music characteristics to dance routines (manual); 
3. Analyse music signals in real-time on the microcontroller to synchronize dance 

movement to music;
4. Balance a mini-Segway using a PID controller so that it moves around on two 

wheels under the control of your phone;
5. Implement the mini-Segway that autonomously dance to live music. 



Lecture 14  Slide 4PYKC 8 March 2024 DE2 – Electronics 2

Electronics 2 – from the past!



Lecture 14  Slide 5PYKC 8 March 2024 DE2 – Electronics 2

Capturing real-time audio samples
 Sampling at 8kHz – assume that music signal under 4kHz
 Should use anti-aliasing filter (but not on PyBench)
 To capture the audio signal, you need to:

1. Set up a timer to produce an interrupt every 125 microsecond
2. Capture a microphone sample and put it into a buffer s_buf (i.e. an array) which 

stores N samples in sequence  (N is 160 in my code, but can be changed) 
3. When the buffer is full (i.e. N samples capture), set buffer_full to TRUE (this is 

called a semaphore or a flag)



Lecture 14  Slide 6PYKC 8 March 2024 DE2 – Electronics 2

Setting up the Timer to generate an interrupt
 The microcontroller used on Pybench has many timers which can be 

programmed to produce interrupts
 We will use Timer 7 to generate the sampling interrupt
 Our interrupt service routine (ISR) is isr_sampling



Lecture 14  Slide 7PYKC 8 March 2024 DE2 – Electronics 2

Buffering of signals
 In all the algorithms considered so far, we need to store N data samples. 

Data could be input music signal (from microphone) x[n], or instantaneous 
energy r[n].

 In Matlab, this is easy.  Matlab perform analysis offline, and you can store 
the signal is a huge array.

 In real-time system, this is not practical (nor possible!).
 Solution: implement a buffer:

x[0] 0n = 0 0 0 0 0

x[1] x[0]n = 1 0 0 0 0

x[2] x[1]n = 2 x[0] 0 0 0

x[3] x[2]n = 3 x[1] x[0] 0 0



Lecture 14  Slide 8PYKC 8 March 2024 DE2 – Electronics 2

Efficient Buffering Method
 Instead of moving lots of data, you can use a “pointer” to specify where to 

put the new data:
 Use x[ptr], and increment ptr each time a new data comes in.
 Wraparound to 0 when ptr reaches N:    ptr = (ptr + 1) % N

x[0] 0n = 0 0 0 0 0

x[0] x[1]n = 1 0 0 0 0

x[0] x[1]n = 2 x[2] 0 0 0

x[0] x[1]n = N-1 x[2] x[3] …… x[N-1]

x[N] x[1]n = N x[2] x[3] …… x[N-1] Wrap-around



Lecture 14  Slide 9PYKC 8 March 2024 DE2 – Electronics 2

Interrupt Service Routine - isr_sampling
 The ISR do the following:

1. Read microphone data
2. Store it in the next location in array s_buf [ptr] – ptr is the index to the array
3. Increment index by 1
4. If index reaches N, buffer is full – set the flag (semaphore)



Lecture 14  Slide 10PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 1)
 Assuming that sampling frequency is 8kHz   
 We keep the current sample and N-1 previous samples of input x[n]
 Compute instantaneous energy of sound signal x[n] in, say, 20 msec 

window (N = 160):

 One approach is to take the Fourier transform of the energy signal 𝜌[n].  
 Collect 1-2 second worth (i. e. 50	to	100	𝜌	[n] values) and perform FFT on 

Matlab.

 The fundamental frequency of the spectrum r [jw] provides an estimate of 
the beat frequency.

𝜌[𝑛] = .
!"#

$%&
𝑥[𝑛 − 𝑘]'



Lecture 14  Slide 11PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 2)
 Compute instantaneous energy of sound signal x[n] in 20 msec window:

 Compute steady state local energy by averaging 100 instantaneous energy 
values 𝜌 0  to 𝜌 99 	:

 Beat occurs in the window when     𝜌 𝑛 > 𝑏	×	< 𝜌 > , where b is a 
threshold chosen for the music.

 Method useful for real-time synchronisation (running MicroPython on 
Pybench).

𝜌[𝑛] = .
!"#

$%&
𝑥[𝑛 − 𝑘]'

< 𝜌 >≈
1
100

.
("#

&&
𝜌[𝑛 − 𝑗]



Lecture 14  Slide 12PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 3)
 The problem of the previous method is that if you choose the wrong value 

for b, the algorithm will not work well.  
 The threshold b need to adapt to the music itself. How?
 Compute the variance v[n] of the instantaneous energy 𝜌[n] over 20msec 

window:

 Now computer the threshold value b as:

       and try    b = 1.5,  and a = 0.0025

𝑣 𝑛 =
1
100

.
("#

&&
(𝜌 𝑛 − 𝑗 −	< 𝜌 >)'

𝑏 = 	𝛽 − 𝛼×𝑣 𝑛



Lecture 14  Slide 13PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using Frequency selected energy
 Algorithm so far does not consider the frequency content of the music 

sound.  That is, we ignore the frequency spectrum of the signal – it is colour 
blind!

 We know that beat information in a signal is actually frequency band 
related.  

 Beat from drums – low frequency; beat from cymbal or triangle – high 
frequency.

 Therefore, assuming that our music is drum heavy, you can low pass filter 
the signal first before performing the previous beat detection algorithm.



Lecture 14  Slide 14PYKC 8 March 2024 DE2 – Electronics 2

Colour of Music
 By analysing the spectrum of music using Matlab, you can also determine 

whether the music segment is vigorous or melodic.
 Based on its spectrum, you can determine how to map music segment to 

dance move.
 You should then store the dance move as ASCII characters in a text file, 

which can then be transferred to Pybench using the Micro SD card. 



Lecture 14  Slide 15PYKC 8 March 2024 DE2 – Electronics 2

Package to drive motors

 The package motor.py is available to help you drive the two motors with ease.  It will 
make developing your milestone code much easier.

 You must first import the package, and then create the motor object:
 

 Thereafter, you can use the following methods:
 The first five methods are 

useful to control speed of the 
motors using the CONTROL 
PAD via Bluetooth

 The last six methods are 
directly controlling the 
movements of the two motors 
(in an open-loop manner)

 v is not really the speed, but 
the PWM drive value to the 
motors. 


