
Lecture 14 Slide 1PYKC 8 March 2024 DE2 – Electronics 2

Lecture 14

Dancing Segway and Analysis
of Musical Signal

Peter Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

Lecture 14 Slide 2PYKC 8 March 2024 DE2 – Electronics 2

Segway Challenge – Aim and Objective
 To demonstrate your understanding of four topics in the Electronics 2

modules that are important to a design engineer:
1. Signal processing;
2. System analysis and design;
3. Feedback control;
4. Real-time embedded system

 The various challenges are designed to achieve the following:
1. Apply what you have learned in this module to a real-life problem;
2. Learn to combine offline processing using Matlab with real-time processing

using MicroPython;
3. Apply embedded system concepts and techniques such as sampling, buffer,

interrupts, scheduling etc.;
4. Have fun!

Lecture 14 Slide 3PYKC 8 March 2024 DE2 – Electronics 2

Segway Project – Learning Outcomes
 By the end of the challenges, you will be able to do most if not all of these:

1. Process music signals using signal processing techniques to extract its signal
characteristics such as rhythm (e.g. beat), spectral contents (e.g. colour) and
mood (e.g. swinging, loud, quiet);

2. Creatively map the music characteristics to dance routines (manual);
3. Analyse music signals in real-time on the microcontroller to synchronize dance

movement to music;
4. Balance a mini-Segway using a PID controller so that it moves around on two

wheels under the control of your phone;
5. Implement the mini-Segway that autonomously dance to live music.

Lecture 14 Slide 4PYKC 8 March 2024 DE2 – Electronics 2

Electronics 2 – from the past!

Lecture 14 Slide 5PYKC 8 March 2024 DE2 – Electronics 2

Capturing real-time audio samples
 Sampling at 8kHz – assume that music signal under 4kHz
 Should use anti-aliasing filter (but not on PyBench)
 To capture the audio signal, you need to:

1. Set up a timer to produce an interrupt every 125 microsecond
2. Capture a microphone sample and put it into a buffer s_buf (i.e. an array) which

stores N samples in sequence (N is 160 in my code, but can be changed)
3. When the buffer is full (i.e. N samples capture), set buffer_full to TRUE (this is

called a semaphore or a flag)

Lecture 14 Slide 6PYKC 8 March 2024 DE2 – Electronics 2

Setting up the Timer to generate an interrupt
 The microcontroller used on Pybench has many timers which can be

programmed to produce interrupts
 We will use Timer 7 to generate the sampling interrupt
 Our interrupt service routine (ISR) is isr_sampling

Lecture 14 Slide 7PYKC 8 March 2024 DE2 – Electronics 2

Buffering of signals
 In all the algorithms considered so far, we need to store N data samples.

Data could be input music signal (from microphone) x[n], or instantaneous
energy r[n].

 In Matlab, this is easy. Matlab perform analysis offline, and you can store
the signal is a huge array.

 In real-time system, this is not practical (nor possible!).
 Solution: implement a buffer:

x[0] 0n = 0 0 0 0 0

x[1] x[0]n = 1 0 0 0 0

x[2] x[1]n = 2 x[0] 0 0 0

x[3] x[2]n = 3 x[1] x[0] 0 0

Lecture 14 Slide 8PYKC 8 March 2024 DE2 – Electronics 2

Efficient Buffering Method
 Instead of moving lots of data, you can use a “pointer” to specify where to

put the new data:
 Use x[ptr], and increment ptr each time a new data comes in.
 Wraparound to 0 when ptr reaches N: ptr = (ptr + 1) % N

x[0] 0n = 0 0 0 0 0

x[0] x[1]n = 1 0 0 0 0

x[0] x[1]n = 2 x[2] 0 0 0

x[0] x[1]n = N-1 x[2] x[3] …… x[N-1]

x[N] x[1]n = N x[2] x[3] …… x[N-1] Wrap-around

Lecture 14 Slide 9PYKC 8 March 2024 DE2 – Electronics 2

Interrupt Service Routine - isr_sampling
 The ISR do the following:

1. Read microphone data
2. Store it in the next location in array s_buf [ptr] – ptr is the index to the array
3. Increment index by 1
4. If index reaches N, buffer is full – set the flag (semaphore)

Lecture 14 Slide 10PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 1)
 Assuming that sampling frequency is 8kHz
 We keep the current sample and N-1 previous samples of input x[n]
 Compute instantaneous energy of sound signal x[n] in, say, 20 msec

window (N = 160):

 One approach is to take the Fourier transform of the energy signal 𝜌[n].
 Collect 1-2 second worth (i. e. 50	to	100	𝜌	[n] values) and perform FFT on

Matlab.

 The fundamental frequency of the spectrum r [jw] provides an estimate of
the beat frequency.

𝜌[𝑛] = .
!"#

$%&
𝑥[𝑛 − 𝑘]'

Lecture 14 Slide 11PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 2)
 Compute instantaneous energy of sound signal x[n] in 20 msec window:

 Compute steady state local energy by averaging 100 instantaneous energy
values 𝜌 0 to 𝜌 99 	:

 Beat occurs in the window when 𝜌 𝑛 > 𝑏	×	< 𝜌 > , where b is a
threshold chosen for the music.

 Method useful for real-time synchronisation (running MicroPython on
Pybench).

𝜌[𝑛] = .
!"#

$%&
𝑥[𝑛 − 𝑘]'

< 𝜌 >≈
1
100

.
("#

&&
𝜌[𝑛 − 𝑗]

Lecture 14 Slide 12PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 3)
 The problem of the previous method is that if you choose the wrong value

for b, the algorithm will not work well.
 The threshold b need to adapt to the music itself. How?
 Compute the variance v[n] of the instantaneous energy 𝜌[n] over 20msec

window:

 Now computer the threshold value b as:

 and try b = 1.5, and a = 0.0025

𝑣 𝑛 =
1
100

.
("#

&&
(𝜌 𝑛 − 𝑗 −	< 𝜌 >)'

𝑏 = 	𝛽 − 𝛼×𝑣 𝑛

Lecture 14 Slide 13PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using Frequency selected energy
 Algorithm so far does not consider the frequency content of the music

sound. That is, we ignore the frequency spectrum of the signal – it is colour
blind!

 We know that beat information in a signal is actually frequency band
related.

 Beat from drums – low frequency; beat from cymbal or triangle – high
frequency.

 Therefore, assuming that our music is drum heavy, you can low pass filter
the signal first before performing the previous beat detection algorithm.

Lecture 14 Slide 14PYKC 8 March 2024 DE2 – Electronics 2

Colour of Music
 By analysing the spectrum of music using Matlab, you can also determine

whether the music segment is vigorous or melodic.
 Based on its spectrum, you can determine how to map music segment to

dance move.
 You should then store the dance move as ASCII characters in a text file,

which can then be transferred to Pybench using the Micro SD card.

Lecture 14 Slide 15PYKC 8 March 2024 DE2 – Electronics 2

Package to drive motors

 The package motor.py is available to help you drive the two motors with ease. It will
make developing your milestone code much easier.

 You must first import the package, and then create the motor object:

 Thereafter, you can use the following methods:
 The first five methods are

useful to control speed of the
motors using the CONTROL
PAD via Bluetooth

 The last six methods are
directly controlling the
movements of the two motors
(in an open-loop manner)

 v is not really the speed, but
the PWM drive value to the
motors.

